文库 基础教育 中考专题 数学

【压轴题】专题11二次函数与单线段最值问题(全国通用)(含解析)-2024年中考数学复习

全国通用 2023-2024学年 中考复习 中考 复习 数学 DOCX   77页   下载0   2024-06-01   浏览13   收藏0   点赞0   评分-   27670字   免费文档
温馨提示:当前文档最多只能预览 3 页,若文档总页数超出了 3 页,请下载原文档以浏览全部内容。
【压轴题】专题11二次函数与单线段最值问题(全国通用)(含解析)-2024年中考数学复习 第1页
【压轴题】专题11二次函数与单线段最值问题(全国通用)(含解析)-2024年中考数学复习 第2页
【压轴题】专题11二次函数与单线段最值问题(全国通用)(含解析)-2024年中考数学复习 第3页
剩余74页未读, 下载浏览全部
2024年中考数学压轴题之学霸秘笈大揭秘(全国通用) 专题11二次函数与单线段最值问题 【 例1 】 (2022•襄阳)在平面直角坐标系中,直线 y = mx ﹣2 m 与 x 轴, y 轴分别交于 A , B 两点,顶点为 D 的抛物线 y =﹣ x 2 +2 mx ﹣ m 2 +2与 y 轴交于点 C . (1)如图,当 m =2时,点 P 是抛物线 CD 段上的一个动点. ① 求 A , B , C , D 四点的坐标; ② 当△ PAB 面积最大时,求点 P 的坐标; (2)在 y 轴上有一点 M (0, m ),当点 C 在线段 MB 上时, ① 求 m 的取值范围; ② 求线段 BC 长度的最大值. 【例 2 】 (2022•湖州)如图1,已知在平面直角坐标系 xOy 中,四边形 OABC 是边长为3的正方形,其中顶点 A , C 分别在 x 轴的正半轴和 y 轴的正半轴上.抛物线 y =﹣ x 2 + bx + c 经过 A , C 两点,与 x 轴交于另一个点 D . (1) ① 求点 A , B , C 的坐标; ② 求 b , c 的值. (2)若点 P 是边 BC 上的一个动点,连结 AP ,过点 P 作 PM ⊥ AP ,交 y 轴于点 M (如图2所示).当点 P 在 BC 上运动时,点 M 也随之运动.设 BP = m , CM = n ,试用含 m 的代数式表示 n ,并求出 n 的最大值. 【 例3 】 (2021•青海)如图,在平面直角坐标系中,直线 y = x +2与坐标轴交于 A , B 两点,点 A 在 x 轴上,点 B 在 y 轴上, C 点的坐标为(1,0),抛物线 y = ax 2 + bx + c 经过点 A , B , C . (1)求抛物线的解析式; (2)根据图象写出不等式 ax 2 +( b ﹣1 ) x + c >2的解集; (3)点 P 是抛物线上的一动点,过点 P 作直线 AB 的垂线段,垂足为 Q 点.当 PQ = 时,求 P 点的坐标. 【 例4 】 (2022•雅安)已知二次函数 y = ax 2 + bx + c 的图象过点 A (﹣1,0), B (3,0),且与 y 轴交于点 C (0,﹣3). (1)求此二次函数的表达式及图象顶点 D 的坐标; (2)在此抛物线的对称轴上是否存在点 E ,使△ ACE 为Rt△,若存在,试求点 E 的坐标,若不存在,请说明理由; (3)在平面直角坐标系中,存在点 P ,满足 PA ⊥ PD ,求线段 PB 的最小值. 1.(2020•河北模拟)已知抛物线 C : y = ax 2 + bx + c ( a >0, c <0)的对称轴为 x =4, C 为顶点,且 A (2,0), C (4,﹣2) 【问题背景】求出抛物线 C 的解析式. 【尝试探索】如图2,作点 C 关于 x 轴的对称点 C ′,连接 BC ′,作直线 x = k 交 BC ′于点 M ,交抛物线 C 于点 N . ① 连接 ND ,若四边形 MNDC ′是平行
【压轴题】专题11二次函数与单线段最值问题(全国通用)(含解析)-2024年中考数学复习
下载提示

1、部份EXCEL表格预览的图片显示不整齐,是文件比较宽,系统生成预览图片时分割成A4打印大小所致,文档并没有问题,可以正常下载;

2、如果首次下次不成功,可再次下载。本站同一份资料不重复扣费;

3、如果浏览器启用了拦截弹出窗口,此功能有可能造成下载失败,请临时关闭拦截;

4、如果是资料包下载后请先用解压软件解压,再使用对应软件打开。软件版本较低时请及时更新;

5、资料成功下载后不支持退换,如发现资料有严重质量问题 【点此反馈】,如果属实,我们会补偿您的损失;

6、如果下载使用过程中还遇到其它问题可以到【帮助中心】查看解决方法;

7、最终解释权归本站所有,如有需要请与客服联系或【点此反馈

QQ
微信
小程序