第
18
讲
图形的变换
(知识精讲+真题练+模拟练+自招练)
【
考纲要求
】
1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;
2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;
3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.
4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);
5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.
【
知识导图
】
【考点
梳理
】
考点一、平移变换
1.
平移的概念:
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.
【要点诠释】
(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换
;
(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据
;
(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.
2.平移的基本性质:
由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.
【要点诠释】
(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征
;
(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.
考点二、轴对称变换
1.轴对称与轴对称图形
轴对称:
把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点.
轴对称图形:
把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
2.轴对称变换的性质
①关于直线对称的两个图形是全等图形.
②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.
③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.
④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.
3.轴对称作图步骤
①找出已知图形
第18讲 图形的变换(知识精讲+真题练+模拟练+自招练)-2024年中考数学解题方法+真题演练(通用版)(含解析)